Понимание условия и решения задачи

Понимание условия и решения задачи

На учебных занятиях по математике использование схемати­зации при решении задач помогает понимать и условие, и реше­ние задачи. Поэтому построение схемы условия задачи должно стать обязательным этапом решения задачи.

Обозначим общее количество каких-либо предметов целой фигурой. Тогда половина этих предметов будет соответствовать половине площади этой фигуры.

Например, если условно представить общее количество тет­радей на рабочем столе учителя (56 тетрадей) в виде круга, то­гда тетради в клеточку (28 тетрадей) составят половину общего количества. Чтобы это условие отметить на схеме, закрасим или заштрихуем половину круга. Получим наглядное изображение условия задачи, и при этом не надо вырисовывать все 56 тетра­дей. Причем, если бы мы даже и нарисовали все 56 тетрадей, то рисунок не был бы так нагляден и полезен для решения зада­чи, как наша схема, где изображены не тетради, а их количество и соотношение количеств различных тетрадей. Также можно изображать любую величину.

Рассмотрим задачу № 1: «Петя готовил уроки

1  ч 40 мин. На математику он потратил 1/5 этого времени, а 1/4 ос­тавшегося времени — на географию. Сколько минут Петя гото­вил уроки по математике и сколько по географии?»

Если всё время, которое Петя потратил на подготовку уро­ков, изобразим прямоугольником, тогда, разделив этот прямо­угольник на пять равных частей и закрасив одну такую часть, получим изображение того количества времени, которое Петя затратил на математику.

Оставшееся время изображено четырьмя полосками. Одна четвертая часть этой закрашенной части будет соответствовать времени, которое Пе­тя затратил на географию.

Для того чтобы проверить, как ученики поняли описанный выше прием схематизации, нужно дать им следующее задание: «Решите задачу, условие которой изображено на схеме».

На схеме (рис. 28) общее количество учеников (32) изобра­жено восьмиконечной звездой, которая разделена на 8 одинаковых сегментов. Значит, каждому сегменту соответствует одинаковое количество учеников. (32 : 8 = 4). Количеству учеников, которые учатся на «4» и «5», соответствует часть фигуры, закрашенная светло-серым цветом. Таких сегментов на схеме три. Значит, чтобы узнать количество учеников, которые учатся на «4» и «5», надо произвести вычисления (4×3 = 12).

Сколько учеников учатся без троек?

Следующее упражнение направлено на формирование уме­ния строить схемы по условию задачи. Например, ученикам да­ется задание построить схему к условию задачи № 2: «Торт в 1 кг 600 г разделили между 8 ребятами. Сколько граммов по­лучил каждый?»

Торт может быть и круглым, и прямоугольным. Получится два вида схем (рис. 29, с. 41). Причем прямоугольный торт мож­но разделить тремя различными способами.

Ориентировочные критерии сформированности умения схематизировать условие задачи

1-й уровень 2-й уровень 3-й уровень
Условие отражено частично.

Искомая величина не отмечена

Условие отражено полностью, но часть условия отражена не на схеме, а в виде краткой записи. Отмечена искомая величина Условие на схеме отражено полно­стью.

Отмечена искомая величина

 

Опубликовано в Методические рекомендации.